

TM Forum 2018. All Rights Reserved.

Frameworx Specification

REST API Design Guidelines
Part 1

Practical guidelines for RESTful APIs naming, CRUD,
filtering, notifications

 TMF630
 Release 17.5.1
 March 2018

Latest Update: TM Forum Release 17.5.1 TM Forum Approved
Version 3.0.2 IPR Mode: RAND

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 2 of 91

Notice

Copyright © TM Forum 2018. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published, and distributed, in whole or in part, without restriction of any kind, provided that the above
copyright notice and this section are included on all such copies and derivative works. However, this
document itself may not be modified in any way, including by removing the copyright notice or
references to TM FORUM, except as needed for the purpose of developing any document or
deliverable produced by a TM FORUM Collaboration Project Team (in which case the rules
applicable to copyrights, as set forth in the TM FORUM IPR Policy, must be followed) or as required
to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by TM FORUM or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and TM
FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

TM FORUM invites any TM FORUM Member or any other party that believes it has patent
claims that would necessarily be infringed by implementations of this TM Forum Standards
Final Deliverable, to notify the TM FORUM Team Administrator and provide an indication of
its willingness to grant patent licenses to such patent claims in a manner consistent with the
IPR Mode of the TM FORUM Collaboration Project Team that produced this deliverable.

The TM FORUM invites any party to contact the TM FORUM Team Administrator if it is
aware of a claim of ownership of any patent claims that would necessarily be infringed by
implementations of this TM FORUM Standards Final Deliverable by a patent holder that is
not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the TM FORUM Collaboration Project Team that produced this TM FORUM
Standards Final Deliverable. TM FORUM may include such claims on its website but
disclaims any obligation to do so.

TM FORUM takes no position regarding the validity or scope of any intellectual property or
other rights that might be claimed to pertain to the implementation or use of the technology
described in this TM FORUM Standards Final Deliverable or the extent to which any license
under such rights might or might not be available; neither does it represent that it has made
any effort to identify any such rights. Information on TM FORUM's procedures with respect
to rights in any document or deliverable produced by a TM FORUM Collaboration Project
Team can be found on the TM FORUM website. Copies of claims of rights made available
for publication and any assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of such proprietary rights
by implementers or users of this TM FORUM Standards Final Deliverable, can be obtained

http://www.tmforum.org/IPRPolicy/11525/home.html

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 3 of 91

from the TM FORUM Team Administrator. TM FORUM makes no representation that any
information or list of intellectual property rights will at any time be complete, or that any
claims in such list are, in fact, Essential Claims.

Direct inquiries to the TM Forum office:

4 Century Drive, Suite 100
Parsippany, NJ 07054, USA
Tel No. +1 973 944 5100
Fax No. +1 973 944 5110
TM Forum Web Page: www.tmforum.org

http://www.tmforum.org/

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 4 of 91

Table of Contents
Notice ... 2

Table of Contents ... 4

List of Figures ... 6

List of Tables .. 6

Executive Summary .. 7

Conventions .. 8

1. General ... 9
API Resource Archetypes ..9
REST Levels ..9
REST API SPECIFICATION INFORMATION .. 10
API implementation technology .. 10
HTTP HEADERS ... 11
GENERAL HTTP HEADERS .. 11
REQUEST AND RESPONSE HTTP HEADERS – CLIENT SIDE ... 11
REQUEST AND RESPONSE HTTP HEADERS – SERVER SIDE .. 12
CUSTOM HEADER ... 13

2. Domain and URI Naming Standards ... 15
Managed Entity Model .. 15
Resource Model and Naming .. 15
Resource ID and href .. 16
Resource Naming Convention ... 16
Resource fields Naming Convention ... 17
Identifier syntax and uniform contract verbs ... 17
Resource collection naming ... 17

3. Uniform Contract Methods and Media Types ... 18
Uniform Contract Operations .. 18
API Media Types ... 19
API RESPONSE STATUS and EXCEPTION CODES ... 20
User, Application and Extended Error Codes ... 22
Representations ... 23
Common Information Model .. 23

4. Query Resources Patterns ... 25
Query single Resource all attributes ... 27
Querying multiple Resources .. 29
Query partial Resource representation or attribute selection .. 32
Query Resources with attribute filtering .. 34
Query Resources with attribute filtering and Iterators .. 38
4.0.1. Paging .. 38
Query Resources with attribute filtering and attribute selection ... 43
Sorting ... 43

5. Modify resources patterns .. 45

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 5 of 91

Uniform contract operations for modifying resources .. 45
Replace all attributes of a resource ... 45
Modify Attribute subset of a resource .. 49
Modify Multi-Valued Attribute .. 51
JSON-PATCH extension to manage arrays .. 53

6. Create Resource Patterns .. 55
Creating a single Resource .. 55

Creating Multiple Resources.. 58
Create a single resource with attribute selection... 64

7. Delete Resource Pattern .. 67

8. Task Resource Pattern ... 68
Modeling Complex operations with task resources ... 68
Using Task with iterator based response .. 70

9. Monitor pattern ... 75

10. Notification Patterns.. 81
Register Listener ... 81
Unregister Listener ... 83
Publishing Events .. 84
Content type filtering ... 87

11. Versioning .. 89
API Versioning... 89

12. Administrative Appendix .. 90
Document History .. 90
12.0.1. Version History ... 90
12.0.2. Release History ... 90
Acknowledgments .. 91

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 6 of 91

List of Figures
N/A

List of Tables
N/A

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 7 of 91

Executive Summary
This document, “REST API Design Guidelines” provides information for the development of TM
Forum APIs using REST. It provides recommendations and guidelines for the implementation of
Entity CRUD operations and Task operations.

It also provides information on filtering and attribute selection. Finally, it does provide information on
supporting notification management in REST based systems.

The uniform contract establishes a set of methods that are expected to be reused by services within
a given collection or inventory.

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 8 of 91

Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC 2119 [RFC2119].

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 9 of 91

1. General

API Resource Archetypes

The following section describes the resource archetypes supported by the TMF REST APIs

A REST API is composed of 3 distinct resource archetypes and should align each resource to just
one of these:

1. Collection Resource – server managed collection of resources. In the TMF REST API
Design Patterns collections are anonymous. A resource with no identifier represents the
resource collection (matching the resource type). Example: troubleTicket, productOrder

2. Managed Resource – e.g. a database record or an object instance–. Its representation
includes: fields with values and links to related resources. Can have child resources, of
different resource types. Client can create, query, update and delete resources.
Example: trouble Ticket, productOrder

3. Task Resource – resources that are executable functions – with associated input and
output parameters. Necessary where the required action cannot be mapped to standard
CRUD methods. Tasks play the role of Controllers in Rails. E.g.
ProductOfferingQualification, ServiceQualification

REST Levels

All APIs must implement Level 2 of the Richardson Maturity Model
http://www.crummy.com/writing/speaking/2008-QCon/act3.html
The Level 3 is not mandatory and not specified in this part of the Design Pattern Guideline. Level 3
issues are addressed in the REST Guidelines Part 3 sections as they relate to workflow oriented
patterns.

http://www.crummy.com/writing/speaking/2008-QCon/act3.html

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 10 of 91

REST API SPECIFICATION INFORMATION

For each REST API specification, the following information MUST be included:

• Purpose of the API.
• URL of resources and API including version number.
• HTTP verbs supported.
• Representations supported: JSON (XML is optional)
• Response schema (and where PUT, POST, PATCH are supported – request schema).
• Links supported (Optional in L2 APIs)
• Response status codes supported.

The API MUST be described using Open API Specification (http://swagger.io/specification/)

API implementation technology

APIs are not technology implementation dependent.

REST APIs embrace all aspects of the Hypertext Transfer Protocol, version 1.1 (HTTP/1.1) including
its request methods, response codes, and message headers.

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 11 of 91

HTTP HEADERS

The following describe the header protocol elements that MUST be used by the TMF REST APIs.

GENERAL HTTP HEADERS

• Cache-Control, Expires, and Date in response headers SHOULD be used when caching
is required.

HTTP/1.1 200 OK
Content-Type: application/json
Cache-control: max-age=60, must-revalidate

• Cache-Control and Expires response headers MAY be used to discourage caching. If a

response must not be cached, Cache-Control can be added with the value no-cache and
no-store.

• Caching SHOULD be encouraged. The no-cache directive will prevent any cache from
serving cached responses. This SHOULD not be used unless absolutely necessary.

• Expiration caching headers SHOULD be used with 200 (“OK”) responses to GET and
HEAD requests.

• Expiration caching headers MAY be used with 3xx and 4xx responses - this helps reduce
the amount of redirecting and error-triggering load on a REST API.

REQUEST AND RESPONSE HTTP
HEADERS – CLIENT SIDE

The negotiation of the media type required by the client and provided by the server requires a
number of headers in both the request and the response.

• The client MAY include ANY HTTP Header as specified in [RFC2616].
• The client MUST expect any HTTP header as specified in [RFC2616].

The media type is the form of the response payload that the client would like to receive; this is
specified using the standard HTTP header: Accept

• The client MUST use the Accept HTTP header to specify the media type.
• The Accept HTTP header MUST have a value matching [RFC2616].
• The client MUST support “application/json” by default.

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 12 of 91

If a media type is specified that is not supported by the server then the response must be
returned using the default, application/json, i.e. as if no media type was specified.

• The client MAY specify the locale of the response in the request header.
• The client MUST use the Accept-Language HTTP header to specify the locale.
• The Accept-Language http header MUST have a value matching the template:

o Locale: ISO-639, ("_", ISO3166-Alpha2)?
• The client MUST expect “en_GB” by default.

The Accept-Language header uses the [ISO639] language code and [ISO3166] country code
standards separated by an underscore “_”, with the second half of the format being optional. If a
language is specified that is not supported by the server then the response payload must be returned
as “en_GB”.

REQUEST AND RESPONSE HTTP
HEADERS – SERVER SIDE

As part of the content negotiation, just as the client can request particular behavior from the server,
the server needs to respond back saying; “this is what you’re getting”.

• The server MAY include any HTTP header as specified in [RFC2616]
• The server MUST expect any HTTP header as specified in [RFC2616].

• The server SHOULD specify the media type of the response in the response header
• The server MUST use the Content-Type HTTP header to specify media type
• The Content–Type HTTP header MUST have a value matching [RFC2616].
• The server MUST support “application/json” by default.

The above rules work in the same way as the Accept; “application/json” is supported as the
default media type of the server. This is returned either when requested or when no Accept
header is present. The server SHOULD provide this header back to the client for the sake of
clarity and so that the client does not have to “detect” the actual media type of the response.
However, it is not required and the client SHOULD assume that either the requested media type
or the default is being returned.

• The server SHOULD specify the Content-Length HTTP header. Client can thus know

whether it has read the correct number of bytes from the connection and can make a
HEAD request to find out how large the entitiy-body is, without downloading it.

• The server SHOULD use Last-Modified HTTP header in the responses to specify the
time at which the resources where created.

• The server SHOULD use ETag in responses. The entity tag may be any string value, so
long as it changes along with the resource’s representation.

• The server MUST use Location HTTP header to specify the URI of a newly created

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 13 of 91

resource and may be used to direct clients to the operational status of an asynchronous
controller resource. This is the preferred method to implement asynchronous behavior.

The following specifies the locale within the response; this matches the Accept-Language HTTP
header in the request message.

• The server MAY specify the locale of the response in the response header.
• The server MUST use the Content-Language HTTP header to specify the locale.
• The Content-Language HTTP header MUST have a value matching the template:

o Locale: ISO-639, ("_", ISO3166-Alpha2)?
• The server MUST support “en_GB” by default.
• The supported locales MUST be documented.
• The server SHOULD specify Content-Length HTTP header.

e.g.

HTTP/1.1 200 OK
Content-Type: application/json
Content-Language: en_GB
Content-Length: 1024
ETag: “x234dff”

CUSTOM HEADER

• The server SHOULD return the HTTP header “X-Total-Count” in a response to a Get List
resource creation request.
The HTTP header must specify the total number of matching resources to the Get, for
example:

[Request]
GET /troubleTicketManagement/troubleTicket?count=0&limit=20
…..
[Response]
Content-Type: application/json
X-Total-Count: 200
…

• The server SHOULD specify a rate limit. Rate Limiting of an API can defined on a per-
user basis and per application basis. If an operation allows X requests per rate limit
window, then it allows the client to make X requests per window.

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 14 of 91

• The server SHOULD return a 429 Too Many Requests http response when this limit is

exceeded.

• The server SHOULD return the following HTTP headers:
X-Rate-Limit-Limit: The # of requests allowed in the current period
X-Rate-Limit-Remaining: The #of requests remaining in the current period
X-Rate-Limit-Reset: The # of seconds left in the current period.

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 15 of 91

2. Domain and URI Naming Standards
Resources represents managed entities acted upon by the REST API. Resource identifiers represent
the actual resources that a service exposes. A resource can be a trouble Ticket, a Logical Port, an
Order, a Task etc...

A resource identifier is like a unique ID assigned to one or more service resources (also known as a
key in OSS/J and entity identifier in TIP). The Resource Identifiers recommendation standardizes the
syntax used to represent them. The most common syntax used to express resource identifiers is the
Web’s Uniform Resource Identifier (URI) syntax.

Managed Entity Model

Resources represent managed entities. Resources are acted upon by the REST API using the
Uniform Contract Verbs (POST, GET, PUT, DELETE, PATCH, etc.…). Operations on Resources
affect the state of the corresponding managed entities.

There is a direct mapping between the managed entities and the corresponding Resources in the
REST model.

The mapping between the managed entity types and the corresponding Resource model MUST be
included in the API specification.

Resource Model and Naming

A resource identifier is like a unique ID assigned to one or more service resources (also known as a
key in OSS/J and entity identifier in TIP).

The URI path may convey the REST API’s resource model, with each forward slash separated path
segment corresponding to a unique resource within the model’s hierarchy.

The URI of a resource also be represented by an ID which contains the sequence of RDN without
having the RDNs to be necessarily encoded as individual resources with an URI.

Characters that require encoding MUST NOT be used in the URI.

Individual resources MUST have a unique identifier field called id.

If the Id is a composite key then it should be split into the following elements: key = {part}-{part}*.

For example, if the key is a combination of managementSystem and name then the id would be
represented as:

 id = {managementSystem}-{name}

The structure of a Resource Path URI is given by the following expression:

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 16 of 91

{resourcePath} = {resourceName} [(/ {resourceID*} [/ {resourcePath} or
{taskResource}]) Or (/{taskResource})]

For example, in our sample Trouble Ticket Management application:

{resourcePath} = ticket/{ticketID}

Resource URIs SHOULD be formed according to the following base
pattern:

{apiRoot} /{resourcePath}

 apiRoot points to the root path of collection of resources.

Resource ID and href

Every Resource have two mandatory attributes:

• id: A unique identifier in the context of the application collection
“id=42”

• href: The full URI of the resource as per Location header
“href=https://api/troubleTicket/42”

All API’s SHOULD use HTTP/SSL, “HTTPS” as the scheme.
The ID MUST be canonicalized and MUST not be a business identifier.
The ID must be unique and immutable within the collection.

Resource Naming Convention

Names in URI (tasks, individual resources, etc.) MUST be camel case or lower case.

e.g. /account/billSummary/billDetail /account/billSummary/billdetail

Each resource name must be a full name, abbreviations and acronyms MUST NOT be used.

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 17 of 91

e.g. resourceSpecification not ResourseSpec

The resource URI MUST NOT use meaningless words.

e.g. “Management”, “Maintenance”, “Provision”

The API Resource name MUST be derived from the TMF Information Framework.

Each resource name MUST be a noun, except tasks that MUST be a verb.

e.g. Service Problem, Trouble Ticket, Service Order as a resource

e.g. ,close, cancel, group, send, check as a task

The resource name MUST NOT expose technical or implementation details.

Resource fields Naming Convention

 Fields names MUST be camel case or lower case.

e.g. orderDate, requestedCompletionDate

Identifier syntax and uniform contract
verbs

URI names MUST NOT contain the names of HTTP verbs (task resources should be used if needed
for clarity).

Resource collection naming

Collection names MUST not use a Collection postfix. Collections are implicit when the resource
name is used.

For example, API/ticket represents the Ticket Collection and GET API/ticket retrieves all the items
from the Ticket Collection (i.e. all the resources of type Ticket contained within the application).

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 18 of 91

3. Uniform Contract Methods and Media Types

HTTP provides us with a set of generic methods, such as GET, PUT, PATCH, POST, DELETE,
HEAD and OPTIONS, that are pre-defined in the HTTP specification. The complete protocol
interactions include a set of response codes, plus syntax for expressing various parameters that
can be encoded in HTTP messages.

The REST uniform contract is based on three fundamental elements:

• resource identifier syntax – How can we express where the data is being transferred to or
from?

• methods – What are the protocol mechanisms used to transfer the data?
• media types – What type of data is being transferred?

The following section describes the guidelines for modeling operations and for specifying
what media types to use.

Uniform Contract Operations

All API operations are based on the REST Uniform Contract operations.

• GET and POST must not be used to tunnel other request methods in the TMF Open API
specifications although it is recognized as a practice in an implementation.

The following describe the relationships between the elements of the API and the Uniform
Contract.

 Only legit resource can be acted upon using Uniform operation and not dependent entity.

Operations on Entities are mapped to operations on the corresponding resources.

Operation on Entities Uniform API Operation Description

Query Entities GET Resource GET must be used to retrieve
a representation of a
resource.

Create Entity POST Resource POST must be used to create
a new resource

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 19 of 91

Operation on Entities Uniform API Operation Description

Partial Update of an Entity PATCH Resource PATCH must be used to
partially update a resource

Complete Update of an Entity PUT Resource PUT CAN be used to
completely update a resource
identified by its resource URI

Remove an Entity DELETE Resource DELETE must be used to
remove a resource

Execute an Action on an
Entity

POST on TASK Resource POST must be used to
execute Task Resources

Other Request Methods POST on TASK Resource GET and POST must not be
used to tunnel other request
methods.

• HEAD must be used to retrieve response headers. HEAD support is always optional.

API Media Types

When defining methods for REST services, we can further specify the types of data a given
method can process. For example, a GET method may be able to transfer a Trouble Ticket
representation in XML or JSON. Each is represented by its own media type.

• REST APIs MUST support the “application/json” media type by default.
• In case of PATCH if application/json is provided then the default rule will be to apply the

same rules as for JSON merge.
• In case of JSON Patch [RFC6902] for partial updates “application/json-patch+json”

media type MUST be used.
• In case of JSON PATCH Query, “application/json-patch+query” media type MUST be

used.
• In case of PATCH as per https://tools.ietf.org/html/rfc7386

“application/merge-patch+json” MUST be used
• The default for resource representation MUST be JSON.
• An API MUST only use the ACCEPT HEADER and CONTENT-TYPE

(POST) to control the representation media types. Other mechanisms
SHOULD not be supported.

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 20 of 91

API RESPONSE STATUS and EXCEPTION
CODES

THE REST APIs MUST use the exception and response codes documented at
http://www.iana.org/assignments/http-status-codes/http-status-codes.xml.

In particular, the following response codes must be used:

 Status

Code
Rule

2xx Success
Indicates that the client’s request was accepted successfully.

200 OK - SHOULD be used to indicate nonspecific success. Must not be used to
communicate errors in the response

201 Created - MUST be used to indicate successful resource creation.

Return message SHOULD contain a resource representation and a
Location header with the created resource’s URI

202 Accepted - MUST be used to indicate successful start of an
asynchronous action

204 No Content - SHOULD be used when the response body is
intentionally empty

206 Partial Content – MUST be used for Partial resource returned in response (with
pagination)

3xx Redirection
Indicates that the client must take some additional action in order to
complete their request.

301 Moved Permanently - SHOULD be used to relocate resources
302 Found - SHOULD not be used
303 See Other - SHOULD be used to refer the client to a different URI –

can be used with a Location header containing the URI of a resource that
shows the outcome of an asynchronous task.

304 Not Modified - SHOULD be used to preserve bandwidth
307 Temporary Redirect - SHOULD be used to tell clients to resubmit the

request to another URI
4xx Client Error

This category of error status codes points the finger at clients.
400 Bad Request - MAY be used to indicate nonspecific failure.

The request could not be understood by the server. The client
SHOULD NOT repeat the request without modifications

http://www.iana.org/assignments/http-status-codes/http-status-codes.xml

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 21 of 91

401 Unauthorized - MUST be used when there is a problem with the
client’s credentials

403 Forbidden - SHOULD be used to forbid access regardless of authorization state.
For example, a client may be authorized to
interact with some, but not all of a REST API’s resources. If the client attempts a
resource interaction that is outside of its permitted
scope, the REST API should respond with 403.

404 Not Found - MUST be used when a client’s provided URI cannot be
mapped to a resource URI

405 Method Not Allowed - MUST be used when the HTTP method is not
supported

 406 No Acceptable - The requested resource is capable of generating only content not
acceptable according to the Accept headers sent in the request

 409 Conflict -The request could not be completed due to a conflict with the current state of
the target resource.

 410 Gone - The requested resource is no longer available at the server and no forwarding
address is known.

 411 Length required-The server refuses to accept the request without a defined Content-
Length.

 412 Precondition Failed - The precondition given in one or more of the request-header fields
evaluated to false when it was tested on the server

 413 Request Entity Too Large- The server is refusing to process a request because the
request entity is larger than the server is willing or able to process

 414 Request-URI Too Long- The server is refusing to service the request because the
Request-URI is longer than the server is willing to interpret

 415 Unsupported Media Type - The request entity has a media type which the server or
resource does not support. For example, the client uploads an image as image/svg+xml,
but the server requires that images use a different format

 422 Unprocessable Entity - The request was well-formed but was unable to be followed due
to semantic errors.

 429 Too Many Requests – SHOULD be used to indicate that the client has sent to many
requests in a given amount of time (“rate limiting”).

 5xx Server Error
This category of error status codes points the finger at servers.

500 Internal Server Error – a generic error message, given when an unexpected condition
was encountered and no more specific message is suitable.

 501 Not implemented- the server either does not recognize the request method, or it lacks
the ability to fulfil the request. Usually this implies future availability (e.g., a new feature
of a web-service API)

503 Service unavailable - The server is currently unavailable (because it is overloaded or
down for maintenance). Generally, this is a temporary state.

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 22 of 91

User, Application and Extended Error
Codes

The HTTP 4xx or 5xx standard error codes should always be used in the response header.
An API MAY support user and application specific error codes.
User and Application specific Error Codes MUST be represented in the Error Representation
(Body) of the response.
Sub codes are possible (400-2) however they MUST be in the Error Representation (Body)
Error Representation in body of the response MUST have the following structure:

Property Description Mandatory

code Application related code
(as defined in the API or
from a common list)

Mandatory

reason Text that explains the
reason for error. This can
be shown to a client user.

Mandatory

message Text that provide more
details and corrective
actions related to the
error. This can be shown
to a client user.

Optional

status http error code extension
like 400-2

Optional

referenceError url pointing to
documentation describing
the error

Optional

@type The class type of a REST
resource.

Optional

@schemaLocation it provides a link to the
schema describing a
REST resource.

Optional

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 23 of 91

Example:

400 Bad Request

Content-type:application/json

{

 "code": "ERR001",

 "reason": "Missing mandatory field",

 "message": "Please provide and Authorisation header"

}

The error codes if supported SHOULD be defined in the API specification.
@type and @schemaLocation SHOULD be used for run time extension of the error.

Representations

• (Well formed) JSON MUST be the default for resource representation
• XML and other formats may optionally be supported via content negotiation with the

client
• Media type selection MUST be signaled with the Accept header.
• Documents (individual resources) MUST have a unique identifier field called ID.
• All documentation SHOULD link to a schema (JSON schema or W3C XML Schema)
• Additional envelopes must not be created. A REST API must leverage the message

“envelope” provided by HTTP.

Common Information Model

When applicable, the data types used to define the information model in API parameters SHOULD
follow the Information Framework reference model from TM Forum. In particular:

• Where there are fields defined in the TMF Information Framework for an API resource

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 24 of 91

then the same field names SHOULD be used in the API.
• The mandatory fields from the TMF Information Framework SHOULD be represented in

the API resource model.
• The optional fields from the TMF Information Framework MAY be represented in the API

resource model.
• If mandatory fields for the API resource are not found in the TMF Information Framework

then the fields MAY be added to the TMF Information Framework.
• If optional fields for the API resource are not found in the TMF Information Framework

then the fields MAY be added to the TMF Information Framework.

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 25 of 91

4. Query Resources Patterns

The following section describe the structure and constraints of query operations.

All examples are relative to the management of TroubleTicket entities having the following JSON
representation.

{

 "id": "42",

 "href":"https:server:port/troubleTicketManagement/troubleTicket/42",

 "correlationId": "TT53482",

 "description": "Customer complaint over last invoice.",

 "severity": "Urgent",

 "@type": "TroubleTicket",

 "creationDate": "2013-07-23T08:16:39.0Z",

 "targetResolutionDate": "2013-07-30T10:20:01.0Z",

 "status": "In Progress",

 "statusChangeReason": "Waiting for invoicing expert.",

 "statusChangeDate": "2013-07-24T08:55:12.0Z",

 "relatedParty": [{

 "href": "https:server:port/CustomerManagement
/customer/1234",

 "role": "Originator"

 },

 {

 "href": " https:server:port/party Management/party/1234",

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 26 of 91

 "role": "Owner"

 },

 {

 "href": " https:server:port/party Management/party /23445",

 "role": "Reviser"

 }

],

 "relatedObject": [{

 "involvement": "Disputed",

 "reference": "/customerBill/1234"

 },

 {

 "involvement": "Adjusted",

 "reference": "/CustomerBill/5678"

 }

],

 "note": [{

 "date": "2013-07-24T09:55:30.0Z",

 "author": "Arthur Evans",

 "text": "Already called the expert"

 },

 {

 "date": "2013-07-25T08:55:12.0Z",

 "author": "Arthur Evans",

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 27 of 91

 "text": "Informed the originator"

 }

]

}

Query single Resource all attributes

GET {apiRoot} /{resourceName}/{resourceID} MUST be used to retrieve the representation of a
resource named resourceID.

If the resource exists. the complete resource representation (with all the attributes) must be returned.

The returned representation must contain a field called « id» and that field be populated with the
resourceID.

If the request is successful then the returned code MUST be 200.

If there are no matching resource then a 404 Not Found must be returned.

HTTP Response
Codes - Success 200 OK

HTTP Response
Codes - Failure

400 Bad Request
404 Not Found
405 Method Not Allowed
500 Internal Server Error

The exceptions code must use the exception codes from http://www.iana.org/assignments/http-
status-codes/http-status-codes.xml as explained in section 4.3.

 Retrieving a Single TroubleTicket with an ID of 42:

REQUEST

GET /api/troubleTicket/42

RESPONSE

200

http://www.iana.org/assignments/http-status-codes/http-status-codes.xml
http://www.iana.org/assignments/http-status-codes/http-status-codes.xml

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 28 of 91

Content-Type: application/json

{
 "id": "42",
 "href":"https:server:port/troubleTicketManagement/troubleTicket/42",
 "correlationId": "TT53482",
 "description": "Customer complaint over last invoice.",
 "severity": "Urgent",
 "@type": "TroubleTicket",
 "creationDate": "2013-07-23T08:16:39.0Z",
 "targetResolutionDate": "2013-07-30T10:20:01.0Z",
 "status": "In Progress",
 "statusChangeReason": "Waiting for invoicing expert.",
 "statusChangeDate": "2013-07-24T08:55:12.0Z",
 "relatedParty": [{
 "href":
"https:server:port/customerManagement/customer/1111",
 "role": "Originator"
 },
 {
 "href": " https:server:port/partyManagement/individual/2222",
 "role": "Owner"
 },
 {
 "href": " https:server:port/partyManagement/individual/12345",
 "role": "Reviser"
 }
],
 "relatedObject": [{
 "involvement": "Disputed",
 "reference":
"https:server:port/billingManagement/customerBill/1234"
 },
 {
 "involvement": "Adjusted",
 "reference": "
https:server:port/billManagement/customerBill/5678"
 }
],
 "note": [{
 "date": "2013-07-24T09:55:30.0Z",
 "author": "Arthur Evans",
 "text": "Already called the expert"
 },
 {

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 29 of 91

 "date": "2013-07-25T08:55:12.0Z",
 "author": "Arthur Evans",
 "text": "Informed the originator"
 }
]
}

Querying multiple Resources

The following section describe how to use the GET operation to retrieve multiple resources without
specifying id’s.

GET {apiRoot} /{resourceName} must be used to retrieve the representation of all the resource for a
resource type corresponding to /{resourceName}

The complete resource representations (with all the attributes) of all the matching entities must be
returned.

The returned representation of each entity must contain a field called « id» and that field be
populated with the resourceID.

If the request is successful then the returned code MUST be 200 otherwise, the appropriate error
code SHOULD be returned.

HTTP Response Codes -
Success 200 OK

HTTP Response Codes -
Failure

400 Bad Request
404 Not Found
405 Method Not Allowed
500 Internal Server Error

The exceptions code must use the exception codes from http://www.iana.org/assignments/http-
status-codes/http-status-codes.xml as explained in section 4.3.

Example:

Retrieving all troubleTickets.

REQUEST

GET /api/troubleTicket

http://www.iana.org/assignments/http-status-codes/http-status-codes.xml
http://www.iana.org/assignments/http-status-codes/http-status-codes.xml

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 30 of 91

RESPONSE

200

Content-Type: application/json

 [{
 "id": "42",
 "href":"https:server:port/troubleTicketManagement/troubleTicket/42",
 "correlationId": "TT53482",
 "description": "Customer complaint over last invoice.",
 "severity": "Urgent",
 "@type": "TroubleTicket",
 "creationDate": "2013-07-23T08:16:39.0Z",
 "targetResolutionDate": "2013-07-30T10:20:01.0Z",
 "status": "In Progress",
 "statusChangeReason": "Waiting for invoicing expert.",
 "statusChangeDate": "2013-07-24T08:55:12.0Z",
 "relatedParty": [{
 "href": " https:server:port/billManagement/customer/1234",
 "role": "Originator"
 },
 {
 "href": " https:server:port/partyMangement/individual/1234",
 "role": "Owner"
 },
 {
 "href": " https:server:port/partyManagement/individual/Roger
Collins",
 "role": "Reviser"
 }
],
 "relatedObject": [{
 "involvement": "Disputed",
 "reference": "
https:server:port/billManagement/customerBill/1234"
 },
 {
 "involvement": "Adjusted",
 "reference": "
https:server:port/billManagement/customerBill/5678"
 }
],
 "note": [{
 "date": "2013-07-24T09:55:30.0Z",
 "author": "Arthur Evans",

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 31 of 91

 "text": "Already called the expert"
 },
 {
 "date": "2013-07-25T08:55:12.0Z",
 "author": "Arthur Evans",
 "text": "Informed the originator"
 }
]
},
 {
 "id": "43",
 "href":"https:server:port/troubleTicketManagement/troubleTicket/43",
 "correlationId": "TT53482",
 "description": "Customer complaint over last invoice.",
 "severity": "Urgent",
 "@type": "TroubleTicket",
 "creationDate": "2014-07-23T08:16:39.0Z",
 "targetResolutionDate": "2014-07-30T10:20:01.0Z",
 "status": "In Progress",
 "statusChangeReason": "Waiting for invoicing expert.",
 "statusChangeDate": "2013-07-24T08:55:12.0Z",
 "relatedParty": [{
 "href": "
https:server:port/customerManagement/customer/1234",
 "role": "Originator"
 },
 {
 "href": " https:server:port/PartyManagement/individual/1234",
 "role": "Owner"
 }
],
 "relatedObject": [{
 "involvement": "Disputed",
 "reference": "
https:server:port/billManagement/customerBill/1236"
 },
 {
 "involvement": "Adjusted",
 "reference": "
https:server:port/billManagement/customerBill/5679"
 }
],
 "note": [{
 "date": "2014-07-24T09:55:30.0Z",
 "author": "Arthur Evans",

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 32 of 91

 "text": "Already called the expert"
 }
]
}
 }

Query partial Resource representation or
attribute selection

The following section describes how to select a subset of the attributes of an entity to be present in a
returned representation.

Attribute selection MUST be enabled on all first level attributes but not on inner classes.
Attribute selection MAY optionally be enabled on all attributes and inner classes.

An attribute selector directive called “fields” MUST be used to specify the attributes to be returned as
part of a partial representation of a resource.

GET {apiRoot} /{resourceName}/{resourceID}/?fields={attributeName*} MUST be used to retrieve
the partial representation of a resource with the attributes named resourceID*.

If the no attribute selector directive is provided then the complete resource representation (with all
the attributes) must be returned.

In order to indicate that no resource properties should be returned the following directive can be
used: “fields=none”.

ID and HREF MUST be returned in the resource body representation when fields=none is used.

Fields MAY be used with other Uniform Operations. See chapter 6 for an example where fields can
be used with POST operation.

Example:

REQUEST

GET /api/troubleTicket?fields=none
Content-Type: application/json

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 33 of 91

RESPONSE

200
Content-Type: application/json

{
 "id": "42",
 "href":"https:server:port/troubleTicketManagement/troubleTicket/42"
}

If there is a name clash between the attribute name and the name of a resource directly under the
parent then /:fields={attributeName*} should be used.

The returned representation must contain a field called « id» and that field be populated with the
resourceID.

If the request is successful then the returned code MUST be 200.

The exceptions code must use the exception codes from http://www.iana.org/assignments/http-
status-codes/http-status-codes.xml as explained in section 4.3.

Example:

Retrieve the report with an « id » of 42 and populate the representations with the description and
status attributes. Note that the id and href attributes are always present.

REQUEST

GET /api/troubleTicket/42/?fields=description,status

RESPONSE

200

Content-Type: application/json

 {
 "id": "42",
 "href": "https:server:port/troubleTicketManagement/troubleTicket/42",
 "description": "Customer complaint over last invoice.",
 "status": "In Progress"
}

http://www.iana.org/assignments/http-status-codes/http-status-codes.xml
http://www.iana.org/assignments/http-status-codes/http-status-codes.xml

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 34 of 91

Query Resources with attribute filtering

The following section describe how to retrieve resources using an attribute filtering mechanism. The
filtering is based on using name value query parameters on entity attributes.

The basic expression is a sequence of attribute assertions being ANDED to formulate a filtering
expression:

GET {apiRoot} /{resourceName}?[{attributeName}={attributeValue}&*]

For examples:

• GET/troubleTicket/?status=acknowledged & status=rejected

Note that the above expressions match only for attribute value equality.

Attribute values ORING is supported and is achieved by providing a filtering expression where the
same attribute name is duplicated a number of times [{attributeName}={attributeValue}&*] different
values.

Alternatively the following expression [{attributeName}={attributeValue},{ attributeValue }*] is also
supported. ORING can also be explicit by using “ ; “ many time
[{attributeName}={attributeValue};{attributeValue}*]
The “OR” behavior can also be achieved by providing a filtering expression using one of the following
expressions.

For example:

• GET /troubleTicket? status=acknowledged; status=rejected

• GET /troubleTicket? status = acknowledged,rejected

 The following operators may be used:

Operator
literal

Description URL
Encoded
form

.gt > greater than (>) %3E

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 35 of 91

Example:
• Using ANDED to describe “017-04-20 >dateTime>2013-04-20” :GET

/troubleTicket?dateTime%3E2013-04-20&dateTime%3C2017-04-20

• Using ORING to describe dateTime<2013-04-20 or dateTime<2017-04-20 :GET
/troubleTicket?dateTime%3C2013-04-20;dateTime%3E2017-04-20

 Complex attribute value type may be filtered using a “.” notation.

 [{attributeName.attributeName}={attributeValue}&*]

The complete resource representations (with all the attributes) of all the matching entities must be
returned.

The returned representation of each entity must contain a field called « id» and that field be
populated with the resourceID.

Return results where the search
criteria field is strictly greater than

.gte >= greater than or equal to (>=)

Return results where the search
criteria field is equal of greater than

%3E%3D

.lt < Less than (<)

Return results where the search
criteria field is strictly less than

%3C

.lte <= less than or equal to (<=)

Return results where the search
criteria field is equal or less than

%3C%3D

regex *= Regexp expression

Note: all regexp special characters
must be encoded

%3D~

.eq Equal to (=)

Returns results where the search
criteria fields is equal to

%3D%3D

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 36 of 91

If the request is successful then the returned code MUST be 200.

The exceptions code must use the exception codes from http://www.iana.org/assignments/http-
status-codes/http-status-codes.xml as explained in section 4.3.

Example:

Retrieve all Trouble Tickets with dateTime greater than 2013-04-20 and status acknowledged.

REQUEST

GET /api/troubleTicket?dateTime.gt=2013-04-20&status=acknowledged or
GET /api/troubleTicket?dateTime%3E2013-04-20&status=acknowledged

RESPONSE

200

Content-Type: application/json

[{
 "id": "42",
 "href":"https:server:port/troubleTicketManagement/troubleTicket/42",
 "correlationId": "TT53482",
 "description": "Customer complaint over last invoice.",
 "severity": "Urgent",
 "@type": "TroubleTicket",
 "creationDate": "2013-07-23T08:16:39.0Z",
 "targetResolutionDate": "2013-07-30T10:20:01.0Z",
 "status": "Acknowledged",
 "statusChangeReason": "Waiting for invoicing expert.",
 "statusChangeDate": "2013-07-24T08:55:12.0Z",
 "relatedParty": [{
 "href": " https:server:port/customerManagement/customer/1234",
 "role": "Originator"
 },
 {
 "href": " https:server:port/partyManagement/party/1234",
 "role": "Owner"
 },
 {
 "href": " https:server:port/partyManagement/individual/3455",
 "role": "Reviser"
 }
],
 "relatedObject": [{
 "involvement": "Disputed",
 "reference": " https:server:port/billManagement/customerBill/1234"

http://www.iana.org/assignments/http-status-codes/http-status-codes.xml
http://www.iana.org/assignments/http-status-codes/http-status-codes.xml

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 37 of 91

 },
 {
 "involvement": "Adjusted",
 "reference": " https:server:port/billManagement/customerBill/5678"
 }
],
 "note": [{
 "date": "2013-07-24T09:55:30.0Z",
 "author": "Arthur Evans",
 "text": "Already called the expert"
 },
 {
 "date": "2013-07-25T08:55:12.0Z",
 "author": "Arthur Evans",
 "text": "Informed the originator"
 }
]
},
 {
 "id": "43",
 "href":"https:server:port/troubleTicketManagement/troubleTicket/43",
 "correlationId": "TT53482",
 "description": "Customer complaint over last invoice.",
 "severity": "Urgent",
 "@type": "TroubleTicket",
 "creationDate": "2013-07-23T08:16:39.0Z",
 "targetResolutionDate": "2013-07-30T10:20:01.0Z",
 "status": "Acknowledged",
 "statusChangeReason": "Waiting for invoicing expert.",
 "statusChangeDate": "2013-07-24T08:55:12.0Z",
 "relatedParty": [{
 "href": " https:server:port/customerManagement/customer/1234",
 "role": "Originator"
 },
 {
 "href": " https:server:port/partyManagement/individual/1234",
 "role": "Owner"
 },
 {
 "href": " https:server:port/partyManagement/individual/2222",
 "role": "Reviser"
 }
],
 "relatedObject": [{
 "involvement": "Disputed",

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 38 of 91

 "reference": " https:server:port/billManagement/customerBill/1234"
 },
 {
 "involvement": "Adjusted",
 "reference": " https:server:port/billManagement/CustomerBill/5678"
 }
],
 "note": [{
 "date": "2013-07-24T09:55:30.0Z",
 "author": "Arthur Evans",
 "text": "Already called the expert"
 },
 {
 "date": "2013-07-25T08:55:12.0Z",
 "author": "Arthur Evans",
 "text": "Informed the originator"
 }
]
}
 }

Query Resources with attribute filtering
and Iterators

To support the return of large collections of resources the GET HTTP method must support pagination.
Attribute filtering and iterators may be combined in a single request as per the following example:

REQUEST

GET /api/troubleTicket?offset=20&limit=10&status =acknowledged

4.0.1. Paging

If no paging query parameters are specified in the URI then all matching resources SHOULD be
returned to the consumer. The server MAY return a partial response with default values for offset and
limit.
For query based pagination, the following query parameters MUST be supported:

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 39 of 91

Parameter Type Description

offset

integer

Requested index for start of
resources to be provided in
response requested by client

limit

integer

Requested number of
resources to be provided in
response requested by client

The above pagination query parameters support both getting a page in the middle of a resultset and
the capability to get the next page.
If the offset query parameter is missing then it must default to zero.

?limit=20 Get the first twenty matching resources.

?offset=0&limit=20 Get the first twenty matching resources.

?offset=10&limit=20 Get the twenty resources starting at the tenth

For query-based pagination, the server MUST return the HTTP header “X-Total-Count” in a
response, with the total number of matching resources so that the client can calculate the next page.

The server SHOULD return navigation links as Web Linking HTTP header, to ease the navigation
and avoid that client has to construct the related links (first, next, previous, last).

The following HTTP response code MUST be returned by the server:

Code Message Description

200 OK Full resource returned in response (no
pagination)

206 Partial
Content

Partial resource returned in response (with
pagination)

Example:

http://tools.ietf.org/html/rfc5988

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 40 of 91

REQUEST

GET api/troubleTicket?offset=20&limit=10

Content-type: application/json

RESPONSE

206

Content-Type: application/json

X-Total-Count :50

Link: <
https:server:port/troubleTicketManagement/troubleTicket?offset=20&limit=10>;
rel="self",

< https:server:port/troubleTicketManagement/ troubleTicket?offset=0&count=10>;
rel="first",

< https:server:port/troubleTicketManagement/troubleTicket?offset=30&limit=10>;
rel="next",

< https:server:port/troubleTicketManagement/ troubleTicket?offset=10&limit=10>;
rel="prev",

< https:server:port/troubleTicketManagement/ troubleTicket?offset=40&limit=10>;
rel="last"

[{

 "id": "20",

 "href": "https:server:port/troubleTicketManagement/troubleTicket/20",

 "status": " acknowledged"

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 41 of 91

 },

 {

 "id": "21",

 "href": "https:server:port/troubleTicketManagement/troubleTicket/21",

 "status": "acknowledged"

 },

 {

 "id": "29",

 "href": "https:server:port/troubleTicketManagement/troubleTicket/29",

 "status": "acknowledged"

 }

]

The content Range header MAY also be used to control the amount of data returned. This header is
present in the request and control the minimum and maximum values returned.
Filtered queries returns collections and the content range header is relative to the entities in the
returned collection.
The following example shows how to use the Range header to iterate a collection of trouble tickets.
The example assumes that 50 trouble tickets match a filtering criteria and that the maximum amount
of trouble tickets being retrieved by calls is set by default to 10.

Example:

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 42 of 91

REQUEST

GET /api/troubleTicket?dateTime.gt=2013-04-20&status=acknowledged

RESPONSE

200

Content-Type: application/json
Content-Range: items 1-10/50

[{
 "id": "41",
 "href": "https:server:port/troubleTicketManagement/troubleTicket/41",
 "status": "In Progress"
 },
 {
 "id": "42",
 "href": "https:server:port/troubleTicketManagement/troubleTicket/42",
 "status": "acknowledged"

 },
 {
 "id": "43",
 "href": "https:server:port/troubleTicketManagement/troubleTicket/43",
 "status": "acknowledged"
 }
]

Retrieving the next elements:

REQUEST

GET /api/troubleTicket?dateTime.gt=2013-04-20&status=acknowledged
Accept-Range:items

 Range:items=11-20

RESPONSE

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 43 of 91

206

Content-Type: application/json
Content-Range: items 11-20/50

[{
 "id": "41",
 "href": "https:server:port/troubleTicketManagement/troubleTicket/41",
 "status": " acknowledged"
 },
 {
 "id": "42",
 "href": "https:server:port/troubleTicketManagement/troubleTicket/42",
 "status": "acknowledged"

 },
 {
 "id": "43",
 "href": "https:server:port/troubleTicketManagement/troubleTicket/43",
 "status": "acknowledged"
 }
]

Query Resources with attribute filtering
and attribute selection

Attribute filtering and attribute selection may be combined in a single request as per the following
example:

REQUEST

GET /api/troubleTicket?fields=description,status&creationDate.gt=2013-04-
20&status =acknowledged

Sorting

To support sorting the sort directive is used in HTTP query parameters is used.

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 44 of 91

If sorting is used then following parameters MUST be supported:
Sort-Query-Parameters : “sort”, “=”, (Sort-Direction), Sort-Field

Sort-Direction : “-“ | “+”
Sort-Field: The field to sort on.

The default direction is Ascending order, the use of the modifier in front of the sort field
name, “-“, changes the sort order direction.

Coma separated list of resource attributes can be requested by client:
?sort= [attributeName],…,[atributeName]
Nested resource attributes can be specified,as pattern:
[parentResource].[childResource].[attributeName]
Sorting order is specified by the left to right order of the fields listed.
Note that the “.sort” format can be used (as for any directive) if there is an ambiguity regarding
the semantic of sort within the query parameters.

REQUEST

GET /api/troubleTicket?sort=creationDate,statusChangeDate,note.date

?sort=name Sort the resultset on the name.
?sort=-name Sort the resultset on the name in descending order.

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 45 of 91

5. Modify resources patterns
The following section describe the patterns used to modify resources.

Uniform contract operations for modifying
resources

TMF REST API’s MUST only uses PUT and PATCH to modify the attributes of an entity.

The TMF REST Design Guideline is strict about the usage of PUT versus PATCH.

• PUT should be used when the semantic of the operation is replace all.
• PUT MUST NOT be used for the partial updates of attributes.
• PATCH MUST be used if a partial update is required.

Replace all attributes of a resource

A PUT replaces the current object with the provided object.

If the intent is to update a limited subset of properties of the resource then PATCH MUST be used
update an object.

One approach to using PUT to facilitate a partial “replace” functionality is to first GET the object,
modify it in memory, then to PUT the modified object back.

If the request is successful then the returned code MUST be 200.

If the request is asynchronous then the returned code MUST be 202 Accepted.

The exceptions code must use the exception codes from http://www.iana.org/assignments/http-
status-codes/http-status-codes.xml as explained in section 4.3.

HTTP Response Codes -
Success

200 OK
204 No Content

HTTP Response Codes - Failure

400 Bad Request
404 Not Found
405 Method Not Allowed
409 Conflict
500 Internal Server Error

Full resource representation MUST be included in the response if the request is successful, and error
code otherwise with no resource representation.

http://www.iana.org/assignments/http-status-codes/http-status-codes.xml
http://www.iana.org/assignments/http-status-codes/http-status-codes.xml

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 46 of 91

Example:

Change the status of the trouble ticket with ID= 42 to resolved.

REQUEST

PUT /api/troubleTicket/42

{
 "id": "42",
 "href":"https:server:port/troubleTicketManagement/troubleTicket/42",
 "correlationId": "TT53482",
 "description": "Customer complaint over last invoice.",
 "severity": "Urgent",
 "@type": "TroubleTicket",
 "creationDate": "2013-07-23T08:16:39.0Z",
 "targetResolutionDate": "2013-07-30T10:20:01.0Z",
 "status": "Resolved",
 "statusChangeReason": "Waiting for invoicing expert.",
 "statusChangeDate": "2013-07-24T08:55:12.0Z",
 "relatedParty": [{
 "href": "
https:server:port/customerManagement/customer/1234",
 "role": "Originator"
 },
 {
 "href": " https:server:port/partyManagement/individual/1234",
 "role": "Owner"
 },
 {
 "href": " https:server:port/partyManagement/individual/2222",
 "role": "Reviser"
 }
],
 "relatedObject": [{
 "involvement": "Disputed",
 "reference": "
https:server:port/bilManagement/customerBill/1234"
 },
 {
 "involvement": "Adjusted",
 "reference": "
https:server:port/bilManagement/CustomerBill/5678"
 }
],
 "note": [{
 "date": "2013-07-24T09:55:30.0Z",

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 47 of 91

 "author": "Arthur Evans",
 "text": "Already called the expert"
 },
 {
 "date": "2013-07-25T08:55:12.0Z",
 "author": "Arthur Evans",
 "text": "Informed the originator"
 }
]
}

RESPONSE

200

Content-Type: application/json

{
 "id": "42",
 "href":"https:server:port/troubleTicketManagement/troubleTicket/42",
 "correlationId": "TT53482",
 "description": "Customer complaint over last invoice.",
 "severity": "Urgent",
 "@type": "TroubleTicket",
 "creationDate": "2013-07-23T08:16:39.0Z",
 "targetResolutionDate": "2013-07-30T10:20:01.0Z",
 "status": "Resolved",
 "statusChangeReason": "Waiting for invoicing expert.",
 "statusChangeDate": "2013-07-24T08:55:12.0Z",
 "relatedParty": [{
 "href": "
https:server:port/customerManagement/customer/1234",
 "role": "Originator"
 },
 {
 "href": " https:server:port/partyManagement/individual/1234",
 "role": "Owner"
 },
 {
 "href": " https:server:port/partyManagement/individual/12222",
 "role": "Reviser"
 }
],
 "relatedObject": [{
 "involvement": "Disputed",

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 48 of 91

 "reference": "
https:server:port/bilManagement/customerBill/1234"
 },
 {
 "involvement": "Adjusted",
 "reference": "
https:server:port/billManagement/CustomerBill/5678"
 }
],
 "note": [{
 "date": "2013-07-24T09:55:30.0Z",
 "author": "Arthur Evans",
 "text": "Already called the expert"
 },
 {
 "date": "2013-07-25T08:55:12.0Z",
 "author": "Arthur Evans",
 "text": "Informed the originator"
 }
]
}

Note that using PUT with only the "status": " Resolved ", if and href attributes subset will result in all
other attributes being set to null or to empty.
Note that id, href and read-only and non-nullable attributes MUST also be specified explicitly.

REQUEST

PUT /api/troubleTicket/42
{
 "id": "42",
"href": "https:server:port/troubleTicketManagement/troubleTicket/42",

"status": " Resolved "
}

RESPONSE

200

Content-Type: application/json

{
 "id": "42",

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 49 of 91

 "href": "https:server:port/troubleTicketManagement/troubleTicket/42",
 "status": "Resolved",
 "relatedParty": [],
 "relatedObject": [],
 "note": []
}

Modify Attribute subset of a resource

PATCH MUST be used to update a limited subset of the attributes of an entity as described in
http://tools.ietf.org/html/rfc5789 and https://tools.ietf.org/html/rfc7386

If the request is successful then the returned code MUST be 200.

If the request is asynchronous then the returned code MUST be 202 Accepted.

The exceptions code must use the exception codes from http://www.iana.org/assignments/http-
status-codes/http-status-codes.xml as explained in section 4.3.

HTTP Response Codes -
Success

200 OK
204 No Content

HTTP Response Codes -
Failure

400 Bad Request
404 Not Found
405 Method Not Allowed
409 Conflict
500 Internal Server Error

Full representation MUST be included in the response if the request is successful, error code
otherwise with no content.

In case of PATCH if application/json is provided then the default rule will be to apply the same rules
as for JSON merge.

Example:

Change the status of the Trouble Ticket with ID= 42 to resolved

http://tools.ietf.org/html/rfc5789
http://www.iana.org/assignments/http-status-codes/http-status-codes.xml
http://www.iana.org/assignments/http-status-codes/http-status-codes.xml

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 50 of 91

REQUEST

PATCH /api/troubleTicket/5
Content-Type: application/merge-patch+json

{
 “status”: “Resolved”
}

RESPONSE

200

Content-Type: Application/json

{
 "id": "42",
 "href":"https:server:port/troubleTicketManagement/troubleTicket/42",
 "correlationId": "TT53482",
 "description": "Customer complaint over last invoice.",
 "severity": "Urgent",
 "@type": "TroubleTicket",
 "creationDate": "2013-07-23T08:16:39.0Z",
 "targetResolutionDate": "2013-07-30T10:20:01.0Z",
 "status": "Resolved",
 "statusChangeReason": "Waiting for invoicing expert.",
 "statusChangeDate": "2013-07-24T08:55:12.0Z",
 "relatedParty": [{
 "href": "
https:server:port/customerManagement/customer/1234",
 "role": "Originator"
 },
 {
 "href": " https:server:port/partyManagement/individual/1234",
 "role": "Owner"
 },
 {
 "href": " https:server:port/partyManagement/individual/23333",
 "role": "Reviser"
 }
],
 "relatedObject": [{
 "involvement": "Disputed",

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 51 of 91

 "reference": "
https:server:port/billManagement/customerBill/1234"
 },
 {
 "involvement": "Adjusted",
 "reference": "
https:server:port/billManagement/customerBill/5678"
 }
],
 "note": [{
 "date": "2013-07-24T09:55:30.0Z",
 "author": "Arthur Evans",
 "text": "Already called the expert"
 },
 {
 "date": "2013-07-25T08:55:12.0Z",
 "author": "Arthur Evans",
 "text": "Informed the originator"
 }
]
}

Modify Multi-Valued Attribute

The modification of list based attributes can be performed using:
PATCH as per https://tools.ietf.org/html/rfc7386 and application/merge-patch+json
JSON PATCH as per http://tools.ietf.org/html/rfc5789 and application/json-patch+json
JSON PATCH query as per TMF REST Guidelines Part 5 and application/json-patch+query.

When PATCH is used with Content-Type: application/json the semantic of the operation is the
replacement of the whole list with the supplied list.
When JSON PATCH is used the Content-Type MUST be set to Content-Type: application/json-
patch+json and the directives for changing, adding, removing array elements follow the directives
stated in the JSON PATCH specification.
The HTTP PATCH method is atomic, as per [RFC5789].
If successful, MUST returns a 200 Ok HTTP response code if there is a representation of the modified
resource in the payload or a 202 Accepted response code if the operation is performed asynchronous.
Example: Add a related party entry to the relatedParty array of an individual resource.

http://tools.ietf.org/html/rfc5789
http://tools.ietf.org/html/rfc5789

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 52 of 91

REQUEST

PATCH partyManagement/individual/11
Content-type: application/json-patch+json

[

 {

 "op": "add",

 "path": "/relatedParty",

 "value": [{

 "role": "Employee",

 "href":
"http://serverlocation:port/partyManagement/organization/1",

 "validFor": {

 "startDateTime": "2013-04-19T16:42:23-
04:00",

 "endDateTime": ""

 },

 "status": "Active"

 }]

 }

]

RESPONSE

200
Content-Type: application/json

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 53 of 91

{ JSON Resource Representation with ALL Attributes
}

Where:

- “op” is the action to take. The following operations are supported: Add, Remove,

Replace, Copy, Move, Test
- “path” is a pointer/reference to the field to change.
- “value” is the value to use, this is optional depending on the value of “op”

Note, the path notation used in the Patch standard is JSON Pointer.

JSON-PATCH extension to manage arrays

JSON Patch Query defines a JSON document structure for expressing a sequence of operations to
apply to a JavaScript Object Notation(JSON) document, specifically to manage arrays; it is suitable for
use with the HTTP PATCH method.
The "application/json-patch+query" media type is used to identify such patch documents.
JSON Patch Query is a format that extends JSON Patch in order to handle partial updates of elements
within an array without previous knowledge of the order in which the impacted elements are located
within the array.
A JSON Patch Query document follows the same structure as a JSON Patch [RFC6902] document,
which represents an array of objects, each object representing a single operation to be applied to the
target JSON document, but the "path" member includes a query parameter to allow identifying uniquely
the element within an array that is impacted by the operation.
The following is an example JSON Patch Query document, transferred in an HTTP PATCH request:

REQUEST

PATCH partyManagement/individual/11
Content-type: application/json-patch+query
[

 {
 "op": "remove",
 "path": "/relatedParty?role="Employee"
 },
 {
 "op": "replace",
 "path": "/relatedParty?role="Employee","value": "Owner"

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 54 of 91

 }
]

RESPONSE

200
Content-Type: application/json-patch+query
{ JSON Resource Representation with ALL Attributes
}

Evaluation of a JSON Patch Query document is performed in the same way as for a JSON Patch
document.
Refer to TMF REST API Guidelines Part 5 below for a complete list of examples of the use of JSON
Patch Query document for partial update of a resource.

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 55 of 91

6. Create Resource Patterns
The following section describe the patterns used to create resources.

Creating a single Resource

POST must be used to create single resources.

Return message MUST contain a resource representation and a Location header with the created
resource’s URI except when fields= none is provided in the request.

Not all the attributes of the entity must be specified but all the attributes of the created entity MUST be
populated by default values (could be null).

A successful creation MUST return a 201 Created HTTP code on success.

A creation operation MUST return a 202 Accepted HTTP response code when the resource creation
is asynchronous.

Response Code List -
Success

201 Created

Response Code List -
Failure

400 Bad Request
404 Not Found
405 Method Not Allowed
409 Conflict
500 Internal Server Error

If operation is async, a Monitor resources MUST be returned. Please check section on Monitor
pattern for more details.

Example:

Create a trouble ticket

REQUEST

POST /api/troubleTicket
Content-Type: application/json

{
 "correlationId": "TT53482",
 "description": "Customer complaint over last invoice.",
 "severity": "Urgent",
 "@type": "TroubleTicket",
 "creationDate": "2013-07-23T08:16:39.0Z",

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 56 of 91

 "targetResolutionDate": "2013-07-30T10:20:01.0Z",
 "status": "In Progress",
 "statusChangeReason": "Waiting for invoicing expert.",
 "statusChangeDate": "2013-07-24T08:55:12.0Z",
 "relatedParty": [{
 "href": "
https:server:port/customerManagement/customer/1234",
 "role": "Originator"
 },
 {
 "href": " https:server:port/partyMangement/individual/1234",
 "role": "Owner"
 },
 {
 "href": " https:server:port/partyManagement/individual/21333",
 "role": "Reviser"
 }
],
 "relatedObject": [{
 "involvement": "Disputed",
 "reference": "
https:server:port/billManagement/customerBill/1234"
 },
 {
 "involvement": "Adjusted",
 "reference": "
https:server:port/billManagement/customerBill/5678"
 }
],
 "note": [{
 "date": "2013-07-24T09:55:30.0Z",
 "author": "Arthur Evans",
 "text": "Already called the expert"
 },
 {
 "date": "2013-07-25T08:55:12.0Z",
 "author": "Arthur Evans",
 "text": "Informed the originator"
 }
]
}

RESPONSE

201

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 57 of 91

Location: https:server:port/troubleTicletManagement/troubleTicket/42

Content-Type: application/json

{
 "id": "42",
 "href":"https:server:port/troubleTicketManagement/troubleTicket/42",
 "correlationId": "TT53482",
 "description": "Customer complaint over last invoice.",
 "severity": "Urgent",
 "@type": "TroubleTicket",
 "creationDate": "2013-07-23T08:16:39.0Z",
 "targetResolutionDate": "2013-07-30T10:20:01.0Z",
 "status": "In Progress",
 "statusChangeReason": "Waiting for invoicing expert.",
 "statusChangeDate": "2013-07-24T08:55:12.0Z",
 "relatedParty": [{
 "href": "
https:server:port/customerManagement/customer/1234",
 "role": "Originator"
 },
 {
 "href": " https:server:port/partyManagement/individual/1234",
 "role": "Owner"
 },
 {
 "href": " https:server:port/partyManagement/individual/2333",
 "role": "Reviser"
 }
],
 "relatedObject": [{
 "involvement": "Disputed",
 "reference": "
https:server:port/billManagement/customerBill/1234"
 },
 {
 "involvement": "Adjusted",
 "reference": "
https:server:port/billManagement/customerBill/5678"
 }
],
 "note": [{
 "date": "2013-07-24T09:55:30.0Z",

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 58 of 91

 "author": "Arthur Evans",
 "text": "Already called the expert"
 },
 {
 "date": "2013-07-25T08:55:12.0Z",
 "author": "Arthur Evans",
 "text": "Informed the originator"
 }
]
}

The resource created is identified by a service generated URI. Alternatively, an ID can be provided.
The ID in the resource representation and the URI are related.

Creating Multiple Resources

JSON PATCH with application/json-patch+json MUST be used to create multiple resources. POST
can’t be used for that purpose.

The JSON PATCH operation is relative to the container collection for the entity types to be created.
Alternatively, “/path” in the PATCH directive can be used to scope a specific collection. Entities are
added to the targeted collection.

Return message MUST contain the resource representation of all the resources created except if
fields=none is provided in the request.

When fields=none is used, id and href MUST be specified in the return message.

Not all the attributes of the entity must be specified in the request but all the attributes of the created
entity MUST be populated by default values (could be null).

A successful PATCH must return either 200 HTTP code or a 204 No Content

An update operation MUST return a 202 Accepted response code if the partial update operation is
performed asynchronous.

Response Code List - Success
200 OK
204 No Content

Response Code List - Failure

400 Bad Request
404 Not Found
405 Method Not Allowed
409 Conflict
500 Internal Server Error

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 59 of 91

Note that the Internet media type for a JSON Patch document is application/json-patch+json.

The HTTP PATCH method is atomic, as per [RFC5789] i.e., all operations MUST be successful
otherwise the application of the full PATCH is unsuccessful.

Example:

Create multiple trouble tickets

REQUEST

PATCH /api/troubleTicket
 Content-type: application/json-patch+json

[{
 "op": "add",
 "path": "/",
 "value": {
 "id": "42",
 "href":
"https:server:port/troubleTicketManagement/troubleTicket/42",
 "correlationId": "TT53482",
 "description": "Customer complaint over last invoice.",
 "severity": "Urgent",
 "@type": "TroubleTicket",
 "creationDate": "2013-07-23T08:16:39.0Z",
 "targetResolutionDate": "2013-07-30T10:20:01.0Z",
 "status": "In Progress",
 "statusChangeReason": "Waiting for invoicing expert.",
 "statusChangeDate": "2013-07-24T08:55:12.0Z",
 "relatedParty": [{
 "href": "
https:server:port/customerManagement/customer/1234",
 "role": "Originator"
 },
 {
 "href": "
https:server:port/partyManagement/individual/1234",
 "role": "Owner"
 },
 {
 "href": "
https:server:port/partyManagement/individual/2333",
 "role": "Reviser"
 }

http://tools.ietf.org/html/rfc5789

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 60 of 91

],
 "relatedObject": [{
 "involvement": "Disputed",
 "reference": "/customerBill/1234"
 },
 {
 "involvement": "Adjusted",
 "reference": "
https:server:port/billManagement/customerBill/5678"
 }
],
 "note": [{
 "date": "2013-07-24T09:55:30.0Z",
 "author": "Arthur Evans",
 "text": "Already called the expert"
 },
 {
 "date": "2013-07-25T08:55:12.0Z",
 "author": "Arthur Evans",
 "text": "Informed the originator"
 }
]
 }
 },

 {
 "op": "add",
 "path": "/",
 "value": {
 "id": "43",
 "href":
"https:server:port/troubleTicketManagement/troubleTicket/43",
 "correlationId": "TT53483",
 "description": "Customer complaint over last invoice.",
 "severity": "Urgent",
 "type": "TroubleTicket",
 "creationDate": "2013-07-23T08:16:39.0Z",
 "targetResolutionDate": "2013-07-30T10:20:01.0Z",
 "status": "In Progress",
 "statusChangeReason": "Waiting for invoicing expert.",
 "statusChangeDate": "2013-07-24T08:55:12.0Z",
 "relatedParty": [{
 "href": "
https:server:port/customerManagement/customer/1234",
 "role": "Originator"

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 61 of 91

 },
 {
 "href": "
https:server:port/partyManagement/individual/1234",
 "role": "Owner"
 },
 {
 "href": "
https:server:port/partyManagement/individual/2344",
 "role": "Reviser"
 }
],
 "relatedObject": [{
 "involvement": "Disputed",
 "reference": "
https:server:port/bilManagement/customerBill/1234"
 },
 {
 "involvement": "Adjusted",
 "reference": "
https:server:port/billManagement/customerBill/5678"
 }
],
 "note": [{
 "date": "2013-07-24T09:55:30.0Z",
 "author": "Arthur Evans",
 "text": "Already called the expert"
 },
 {
 "date": "2013-07-25T08:55:12.0Z",
 "author": "Arthur Evans",
 "text": "Informed the originator"
 }
]
 }

 }
]

RESPONSE

[{
 "id": "42",

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 62 of 91

 "href": "https:server:port/troubleTicketManagement/troubleTicket/42",
 "correlationId": "TT53482",
 "description": "Customer complaint over last invoice.",
 "severity": "Urgent",
 "@type": "TroubleTicket",
 "creationDate": "2013-07-23T08:16:39.0Z",
 "targetResolutionDate": "2013-07-30T10:20:01.0Z",
 "status": "In Progress",
 "statusChangeReason": "Waiting for invoicing expert.",
 "statusChangeDate": "2013-07-24T08:55:12.0Z",
 "relatedParty": [{
 "href": "
https:server:port/customerManagement/customer/1234",
 "role": "Originator"
 },
 {
 "href": "
https:server:port/partyManagement/individual/1234",
 "role": "Owner"
 },
 {
 "href": "
https:server:port/partyManagement/individual/2333",
 "role": "Reviser"
 }
],
 "relatedObject": [{
 "involvement": "Disputed",
 "reference": "/customerBill/1234"
 },
 {
 "involvement": "Adjusted",
 "reference": "
https:server:port/billManagement/customerBill/5678"
 }
],
 "note": [{
 "date": "2013-07-24T09:55:30.0Z",
 "author": "Arthur Evans",
 "text": "Already called the expert"
 },
 {
 "date": "2013-07-25T08:55:12.0Z",
 "author": "Arthur Evans",
 "text": "Informed the originator"

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 63 of 91

 }
]
 },
 {
 "id": "43",
 "href": "https:server:port/troubleTicketManagement/troubleTicket/43",
 "correlationId": "TT53483",
 "description": "Customer complaint over last invoice.",
 "severity": "Urgent",
 "@type": "TroubleTicket",
 "creationDate": "2013-07-23T08:16:39.0Z",
 "targetResolutionDate": "2013-07-30T10:20:01.0Z",
 "status": "In Progress",
 "statusChangeReason": "Waiting for invoicing expert.",
 "statusChangeDate": "2013-07-24T08:55:12.0Z",
 "relatedParty": [{
 "href": "
https:server:port/customerManagement/customer/1234",
 "role": "Originator"
 },
 {
 "href": "
https:server:port/partyManagement/individual/1234",
 "role": "Owner"
 },
 {
 "href": "
https:server:port/partyManagement/individual/2344",
 "role": "Reviser"
 }
],
 "relatedObject": [{
 "involvement": "Disputed",
 "reference": "
https:server:port/bilManagement/customerBill/1234"
 },
 {
 "involvement": "Adjusted",
 "reference": "
https:server:port/billManagement/customerBill/5678"
 }
],
 "note": [{
 "date": "2013-07-24T09:55:30.0Z",
 "author": "Arthur Evans",

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 64 of 91

 "text": "Already called the expert"
 },
 {
 "date": "2013-07-25T08:55:12.0Z",
 "author": "Arthur Evans",
 "text": "Informed the originator"
 }
]
 }
]

The resources created are identified by a service generated URI. Alternatively, an ID can be
provided. The ID in the resource representation and the URI are related.

Create a single resource with attribute
selection

Attribute selection MAY be used with POST operation.
Example:

REQUEST

POST /api/troubleTicket?fields=none
Content-Type: application/json

{
 "id": "42",
 "href":"http:server:port/troubleTicketManagement/troubleTicket/42",
 "correlationId": "TT53482",
 "description": "Customer complaint over last invoice.",
 "severity": "Urgent",
 "@type": "TroubleTicket",
 "creationDate": "2013-07-23T08:16:39.0Z",
 "targetResolutionDate": "2013-07-30T10:20:01.0Z",
 "status": "In Progress",
 "statusChangeReason": "Waiting for invoicing expert.",
 "statusChangeDate": "2013-07-24T08:55:12.0Z",
 "relatedParty": [{

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 65 of 91

 "href": "
http:server:port/customerManagement/customer/1234",
 "role": "Originator"
 },
 {
 "href": " http:server:port/partyManagement/individual/1234",
 "role": "Owner"
 },
 {
 "href": " http:server:port/partyMangement/individual/1222",
 "role": "Reviser"
 }
],
 "relatedObject": [{
 "involvement": "Disputed",
 "reference": "
http:server:port/billManagement/customerBill/1234"
 },
 {
 "involvement": "Adjusted",
 "reference": "
http:server:port/billManagement/CustomerBill/5678"
 }
],
 "note": [{
 "date": "2013-07-24T09:55:30.0Z",
 "author": "Arthur Evans",
 "text": "Already called the expert"
 },
 {
 "date": "2013-07-25T08:55:12.0Z",
 "author": "Arthur Evans",
 "text": "Informed the originator"
 }
]
}

RESPONSE

201

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 66 of 91

Location: http:server:port/troubleTicletManagement/troubleTicket/42
Content-Type: application/json

{
 "id": "42",
 "href":"http:server:port/troubleTicketManagement/troubleTicket/42"
}

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 67 of 91

7. Delete Resource Pattern
A Delete operation on a resource is used to remove a new instance of a resource.

A Delete uses the HTTP method DELETE on a Resource URI, for example:

Request

DELETE /troubleTicketManagement/troubleTicket/42

Response

204

A Delete operation MUST use an HTTP DELETE on a resource.
A Delete operation MUST NOT accept a request payload.
A Delete operation MUST return exactly one resource.

If a DELETE method is successfully applied, the origin server SHOULD
 send

- a 202 (Accepted) status code if the action will likely succeed
 but has not yet been enacted,

- a 204 (No Content) status code if the
 action has been enacted and no further information is to be supplied,
 or

- a 200 (OK) status code if the action has been enacted and the
 response message includes a representation describing the status.

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 68 of 91

8. Task Resource Pattern
This section describes the use of Task resources to expose complex operations that are not easily or
not decomposable to CRUD Entity based operations. Examples include:

- Address Validation
- Prepay Balance top-up
- Order Cancelation
- Alarm Clearing

Modeling Complex operations with task
resources

If proper REST design is limited during translation from action-based operational interfaces to REST
interfaces it is allowable to define a resource for the operation and POST to that operation to
execute.

A TASK resource name is a verb representing the task to be executed. TASK creation may result in
the creation of a number of related resources or other tasks. E.g. validate, check, heal, migrate,
clear, close, transfer etc.

A task operation MUST return:

- a 200 OK if successful and the full representation,
- a 202 Accepted if the operation is performed asynchronous or
- a 204 No content otherwise.

Response Code List -
Success

200 OK
202 Accepted
204 No content

Response Code List -
Failure

400 Bad Request
404 Not Found
405 Method Not Allowed
409 Conflict
500 Internal Server Error

If the operation modifies another resource, "303 See Other" is returned. In this case, the "Location"
HTTP header shall point to the primary resource.

There are use cases:

- when a task request is simple and there is no need to persist the request but the
server may choose to persist the request in any case, e.g. for accounting purposes

- long running task when there is a need to persist the request in order to monitor it.

Simple task request MAY return an ID.
If an ID is returned it MUST represent a resource that was created for the task.

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 69 of 91

Iterators MAY be supported on simple task.

Example:

Request

POST /alarmManagement/alarm/123/clear
Content-Type: application/json

{
……
}

Response

204

Long Running TASKS SHOULD have a state.
Example:

Long running TASKS MUST return an ID and href.

 stm GeographicAddressValidation Lifecycle

Initial

Rejected

Final

In Progress

Accept
Address
Validation

Done

Terminated with Error

[No]Yes

Address Validation Failed

Adress Validation treated

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 70 of 91

It is not recommended to delete a task but rather to cancel the task with PATCH.

Example:

Request

POST /geographicAddressManagement/validate
Content-Type: application/json

{
 "provideAlternative": true,
 "validAddress": [
 {
 "streetName": "Denfert-Rocheraut",
 "streetType": "rue",
 "postcode": "69004",
 "city": "Lyon",
 "stateOrProvince": "Rhone",
 "country": "France",
 }
}

Response

200

{
 "id": "8318",
 "href": "https://host:port:location/ geographicAddressManagement/validate/8318"
}

Using Task with iterator based response

There are scenarios when there MAY be a need to iterate on the response part of the TASK (e.g.
iterate on array of the response of the TASK).
The iterator resource SHOULD include as minimum the sub-resource within the response that need
to iterate on.

Iterator resource example:

[

 {
 "id": "1960",
 "href": "https://host:port/location/geographicAddress/1960",

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 71 of 91

 "streetNr": "2",
 "streetName": "Denfert-Rocheraut",
 "streetType": "rue",
 "postcode": "69004",
 "locality": "Lyon",
 "city": "Lyon",
 "stateOrProvince": "Rhone",
 "country": "France",
 "geographicLocationReforValue": {
 "id": "7200",
 "href": "https://host:port/location/geographicLocation/7200"
 }
 },
 {
 "id": "8965",
 "href": "https://host:port/location/geographicAddress/8965",
 "streetNr": "4",
 "streetName": "Denfert-Rocheraut",
 "streetType": "rue",
 "postcode": "69004",
 "locality": "Lyon",
 "city": "Lyon",
 "stateOrProvince": "Rhone",
 "country": "France",
 "geographicLocationRefOrValue": {
 "id": "7204",
 "href": "https://host:port/location/geographicLocation/7204"
 }
 },
 {
 "id": "7854",
 "href": "https://host:port/location/geographicAddress/7854",
 "streetNr": "6",
 "streetName": "Denfert-Rocheraut",
 "streetType": "rue",
 "postcode": "69004",
 "locality": "Lyon",
 "city": "Lyon",
 "stateOrProvince": "Rhone",
 "country": "France",
 "geographicLocationRefOrValue": {
 "id": "7263",
 "href": "https://host:port/location/geographicLocation/7263"

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 72 of 91

 }
]

Example POST …/validate:

Request

POST /geographicAddressManagement/validate
Accept: application/json

Response

201
Content-Type: application/json

 Link: < https://host:port:location/ geographicAddressManagement/validate/8318/iterator>

{
 "id": "8318",
 "href": https://host:port:location/ geographicAddressManagement/validate/8318,
 "alternateAddress": [
 {
 "id": "1960",
 "href": "https://host:port/location/geographicAddress/1960",
 "streetNr": "2",
 "streetName": "Denfert-Rocheraut",
 "streetType": "rue",
 "postcode": "69004",
 "locality": "Lyon",
 "city": "Lyon",
 "stateOrProvince": "Rhone",
 "country": "France",
 "geographicLocationReforValue": {
 "id": "7200",
 "href": "https://host:port/location/geographicLocation/7200"
 }
 },
 {
 "id": "8965",
 "href": "https://host:port/location/geographicAddress/8965",
 "streetNr": "4",
 "streetName": "Denfert-Rocheraut",
 "streetType": "rue",
 "postcode": "69004",
 "locality": "Lyon",
 "city": "Lyon",
 "stateOrProvince": "Rhone",
 "country": "France",
 "geographicLocationRefOrValue": {

https://host:port:location/%20geographicAddressManagement/validate/8318

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 73 of 91

 "id": "7204",
 "href": "https://host:port/location/geographicLocation/7204"
 }
 },
 {
 "id": "7854",
 "href": "https://host:port/location/geographicAddress/7854",
 "streetNr": "6",
 "streetName": "Denfert-Rocheraut",
 "streetType": "rue",
 "postcode": "69004",
 "locality": "Lyon",
 "city": "Lyon",
 "stateOrProvince": "Rhone",
 "country": "France",
 "geographicLocationRefOrValue": {
 "id": "7263",
 "href": "https://host:port/location/geographicLocation/7263"
 }
 }
]

}

GET /iterator

Request

GET /geographicAddressManagement/validate/8318/iterator
Accept: application/json

Response

206

Content-Type: application/json
X-Total-Count:10

 Link: < https://host:port:location/
geographicAddressManagement/validate/8313/iterator?offset=0&limit=3>; rel="first",
 < https://host:port:location/ geographicAddressManagement/ validate/8313/iterator?offset=3&limit=6>;
rel="next",
 < https://host:port:location/ geographicAddressManagement/ validate/8313/iterator?offset=0&limit=3>;
rel="prev",
https://host:port:location/ geographicAddressManagement/ validate/8313/iterator?offset=6&limit=9>;
rel="last"

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 74 of 91

 [
 {
 "id": "1960",
 "href": "https://host:port/location/geographicAddress/1960",
 "streetNr": "2",
 "streetName": "Denfert-Rocheraut",
 "streetType": "rue",
 "postcode": "69004",
 "locality": "Lyon",
 "city": "Lyon",
 "stateOrProvince": "Rhone",
 "country": "France",
 "geographicLocationReforValue": {
 "id": "7200",
 "href": "https://host:port/location/geographicLocation/7200"
 }
 },
 {
 "id": "8965",
 "href": "https://host:port/location/geographicAddress/8965",
 "streetNr": "4",
 "streetName": "Denfert-Rocheraut",
 "streetType": "rue",
 "postcode": "69004",
 "locality": "Lyon",
 "city": "Lyon",
 "stateOrProvince": "Rhone",
 "country": "France",
 "geographicLocationRefOrValue": {
 "id": "7204",
 "href": "https://host:port/location/geographicLocation/7204"
 }
 },
 {
 "id": "7854",
 "href": "https://host:port/location/geographicAddress/7854",
 "streetNr": "6",
 "streetName": "Denfert-Rocheraut",
 "streetType": "rue",
 "postcode": "69004",
 "locality": "Lyon",
 "city": "Lyon",
 "stateOrProvince": "Rhone",
 "country": "France",
 "geographicLocationRefOrValue": {
 "id": "7263",
 "href": "https://host:port/location/geographicLocation/7263"
 }
 }
]

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 75 of 91

9. Monitor pattern
The monitor resource is used to monitor the execution of async requests on specific resource.
The monitor resource MUST support HTTP GET method.

Supporting Async requests are optional. If supported, then, monitor or notification pattern MUST
be used.
A monitor resource SHOULD be defined to support a monitor pattern.

Monitor resource MUST have at least the following attributes:

Field Description

id Identifier of an instance of the monitor. Required to be unique within
the resource

type Used in URIs as the identifier for specific instances of a type

name Name of resource type i.e. monitor

request Represents the request

response Represents the response

state The monitor state of the resource. InProgress, InError, Completed

href The reference to this monitor

sourceHref The monitored resource href

PUT/POST/PATCH/DELETE operations SHOULD not be supported.

REQUEST

PUT|POST|PATCH|DELETE /api/…/monitor

Accept: application/json

RESPONSE

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 76 of 91

405 Method Not Allowed

The monitors can be accessed via the Monitor collection or a singleton under their source for
example: api/activation/service/47/monitor.

Returns HTTP/1.1 status code 200 if the request was successful.
On failure, appropriate error code SHOULD be returned.

The monitor resources SHOULD support at least the following states: in progress, success, failed.

Structure of the monitor can be extended using the extension patterns described in Part 2 of the
guidelines.

Example:
The response to POST /activation/service operation cannot be sent synchronously, a monitor
resource hyperlink is given in the response

REQUEST

POST /api/activation/service

Accept: application/json

 {

 "state" : "Active",

 "serviceSpecification":{
 "id":"conferenceBridgeEquipment",
 "href":"http: //serverlocation:port/catalogManagement/serviceSpecification
/conferenceBridgeEquipment"
 },
 "serviceCharacteristic":[
 {
 "name":"numberOfVc500Units",
 "value":"1"

 },

 {

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 77 of 91

 "name":"numberOfVc100Units",
 "value":"2"

 },

 {
 "name":"routerType",
 "value":"CiscoASR1000"

 },

 {
 "name":"powerSupply",
 "value":"UK"
 }
]}

 }

RESPONSE

202 Accepted

Content-Type: Application/JSON

Location: http://server/api/activation/service/14

{

// same as in request

}

Link: <http://server/api/activation/monitor/1514>;rel=related;title=monitor,

<http://server/api/activation/service/14>;rel=self,

<http://server/api/activation/service/14>;rel=canonical

http://server/api/provisioning/service/14
http://server/api/provisioning/monitor/1514%3e;rel=related;title=monitor
http://server/api/provisioning/service/14%3e;rel=self
http://server/api/provisioning/service/14%3e;rel=canonical

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 78 of 91

Example: GET a monitor.

REQUEST

GET /api/activation/monitor/14
Content-type: application/json

RESPONSE

200
Content-Type: application/json

 {
 "id": "14",
 "state": "Completed",
 "type": "monitor",
 "request": {
 "method": "POST",
 "to": "",
 "body": {
 "state": "Active",
 "serviceSpecification": {
 "id": "conferenceBridgeEquipment",
 "href": "http:
//serverlocation:port/catalogManagement/serviceSpecification
/conferenceBridgeEquipment"
 },
 "serviceCharacteristic": [{
 "name": "numberOfVc500Units",
 "value": "1"
 },
 {
 "name": "numberOfVc100Units",
 "value": "2"
 },
 {
 "name": "routerType",
 "value": "CiscoASR1000"

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 79 of 91

 },
 {
 "name": "powerSupply",
 "value": "UK"
 }
]
 }
 },
 "header": [{
 "name": "Accept",
 "value": "application/json"
 }],

 "response": {
 "statusCode": "202",
 "body": {
 "state": "Active",
 "serviceSpecification": {
 "id": "conferenceBridgeEquipment",
 "href": "http:
//serverlocation:port/catalogManagement/serviceSpecification
/conferenceBridgeEquipment"
 },
 "serviceCharacteristic": [{
 "name": "numberOfVc500Units",
 "value": "1"
 },
 {
 "name": "numberOfVc100Units",
 "value": "2"
 },
 {
 "name": "routerType",
 "value": "CiscoASR1000"
 },
 {
 "name": "powerSupply",
 "value": "UK"
 }

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 80 of 91

]
 },
 "header": [{
 "name": "Content-Type",
 "value": "application/json"
 }, {
 "name": "Link",
 "value":
"<http://server/api/activation/monitor/1514>;rel=related;title=monitor,<http:
//server/api/activation/service/14>;rel=self,<http:
//server/api/activation/service/14>;rel=canonical"
 }]
 },
 "href": "http://host:port:location/activation/monitor/14",
 "sourceHref": "http//host:port:location/activation/service/14"
 }

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 81 of 91

10. Notification Patterns
The following section describe the publish subscribe pattern supported by REST based APIs
supporting eventing.

A hub can be created at the API level or at each API resource level within an API.

Register Listener

The registration of a listener is done by creating a HUB resource unique to the listener (equivalent of
a subscription). The HUB resource is attached or bound to the API and its attribute specify the POST
event callback address of the listener.

The hub is created via a POST api/hub call.

The POST call sets the communication endpoint address the service instance must use to deliver
notifications (by default on all supported events). Note that a query expression may be supplied. The
query expression may be used to filter specific event types and/or any content of the event. The
query expression structure used for notification filtering is the same than the one used for queries i.e.
GET.

Subsequent POST calls may be rejected by the service if it does not support multiple listeners. In this
case DELETE /api/hub/{id} must be called before the endpoint can be created again.

Returns HTTP/1.1 status code 204 if the request was successful.

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 82 of 91

Returns HTTP/1.1 status code 409 if request is not successful.

Example: Create a Hub to receive events on the “http://in.listener.com"

REQUEST

POST /api/hub
Accept: application/json

{"callback": "http://in.listener.com"}

RESPONSE

201
Content-Type: application/json
Location: /api/hub/42

{"id":"42","callback":"http://in.listener.com","query":null}

Example: Get a Hub

REQUEST

GET /api/hub/{id}
Accept: application/json

RESPONSE

200
Content-Type: application/json

[
 {
 "id": "string",
 "callback": "string",
 "query": "string"
 }
]

Example: Subscribe to specific eventType.

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 83 of 91

REQUEST

POST /api/hub
Accept: application/json

{"callback": http://in.listener.com,

“query”:”eventType = TroubleTicketStateChangeNotification”
}

RESPONSE

201
Content-Type: application/json
Location: /api/hub/42

{"id":"42",
"callback":"http://in.listener.com",
"query":””:”eventType = TroubleTicketStateChangeNotification”
}

Unregister Listener

To unregister a listener the HUB resource corresponding to the listener must be destroyed.

DELETE hub/{id}

This clears the communication endpoint address that was set by creating the Hub.

On successful deletion, returns HTTP status 200 (OK) along with a response body or returns HTTP
status 204 (NO CONTENT) with no response body.
 For the HTTP status 204 the HTTP payload returns no data.

On unsuccessful deletion, the HTTP status 404 (NOT FOUND) can be returned. The 404 (NOT
FOUND) status means that the server has not found anything matching the request URI.

http://in.listener.com/

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 84 of 91

REQUEST

DELETE /api/hub/{id}
Accept: application/json

RESPONSE

204

Publishing Events

Publishing an event is done by posting the event to the listener address.

The structure of the event is:

{
 "eventId":"eventId",
 "eventTime":"eventTime",
 "eventType":"event Type",
 "event": {
 "resource" :
 {--RESOURCE SAMPLE --}
 }
}

Returns HTTP/1.1 status code 201

For example, posting a TroubleTicket event:

REQUEST

POST /client/listener
Accept: application/json

{

 "eventId":"00001",

 "eventTime":"2015-11-16T16:42:25-04:00",

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 85 of 91

 "eventType":"TroubleTicketStateChangeNotification",

 "event": {

 "troubleTicket" :

 {

 "id": "43",

 "href":"https:server:port/troubleTicketManagement/troubleTicket/43",

 "correlationId": "TT53483",

 "description": "Customer complaint over last invoice.",

 "severity": "Urgent",

 "@type": "TroubleTicket",

 "creationDate": "2013-07-23T08:16:39.0Z",

 "targetResolutionDate": "2013-07-30T10:20:01.0Z",

 "status": "In Progress",

 "statusChangeReason": "Waiting for invoicing expert.",

 "statusChangeDate": "2013-07-24T08:55:12.0Z",

 "relatedParty": [{

 "href": "
https:server:port/customerManagement/customer/1234",

 "role": "Originator"

 },

 {

 "href": " https:server:port/partyManagement/individual/1234",

 "role": "Owner"

 },

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 86 of 91

 {

 "href": " https:server:port/partyManagement/individual/2334",

 "role": "Reviser"

 }

],

 "relatedObject": [{

 "involvement": "Disputed",

 "reference": "
https:server:port/billManagement/customerBill/1234"

 },

 {

 "involvement": "Adjusted",

 "reference": "
https:server:port/billManagement/customerBill/5678"

 }

],

 "note": [{

 "date": "2013-07-24T09:55:30.0Z",

 "author": "Arthur Evans",

 "text": "Already called the expert"

 },

 {

 "date": "2013-07-25T08:55:12.0Z",

 "author": "Arthur Evans",

 "text": "Informed the originator"

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 87 of 91

 }

]

}

 }

}

Content type filtering

Provide example on how we can filter events based on their content.

REQUEST

POST /api/hub/
Accept: application/json

{
"callback": http://in.listener.com,

“query”:”eventType = TroubleTicketStateChangeNotification &
event.troubletTicket.severity=Urgent”,
“fields”:”event.troubleTicket.id, event.TroubleTicket.name,
event.troubleTicket.severity”
}

RESPONSE

201
Content-Type: application/json

{
“id”:”string”
"callback": http://in.listener.com,

“query”:”eventType = TroubleTicketStateChangeNotification &
event.troubletTicket.severity=Urgent”,

http://in.listener.com/
http://in.listener.com/

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 88 of 91

“fields”:”event.troubleTicket.id, event.TroubleTicket.name,
event.troubleTicket.severity”
}

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 89 of 91

11. Versioning

API Versioning

REST APIs MUST state version with “v” following the API Name, e.g.: APIName/v1/resource.

The schema associated with a REST API must have its version number aligned with that of the
REST API.
The version number has major, minor and revision numbers. E.g. v1.0.0
The version number (without the revision number) is held in the URI. E.g
troubleTicketManagement/v1/ticket
The major version number is incremented for an incompatible change.
The minor version number is incremented for a compatible change.

For minor modifications of the API, version numbering must not be updated, provided the following
backward compatibility rules are respected:

• New elements in a data type must be optional (minOccurs=0)
• Changes in the cardinality of an attribute in a data type must be from mandatory to

 optional or from lower to greater
• New attributes defined in an element must be optional (absence of use=”required”).
• If new enumerated values are included, the former ones and its meaning must be kept.
• If new operations are added, the existing operations must be kept
• New parameters added to existing operations must be optional and existing parameters

must be kept

For major modifications of the API, not backward compatible and forcing client implementations to be
changed, the version number must be updated.

The format for the API version number is defined as:

{serverRoot}/{apiName}/{apiVersion} 

where

{apiName} is the name of the API {apiVersion} is the version of the API
(e.g. v1) {serverRoot} is implementation specific (e.g.:
https://api.service.company.com)

The versioning is applied uniformly to all the entities under a versioned API. That is, it is assumed
that entities under the management scope of the API are all aligned with the same version of the SID
for example.

https://api.service.company.com/

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 90 of 91

12. Administrative Appendix
This Appendix provides additional background material about the TM Forum and this
document. In general, sections may be included or omitted as desired, however a Document
History must always be included.

Document History

12.0.1. Version History
This section records the changes between this and the previous document version as it is edited
by the team concerned. Note: this is an incremental number which does not have to match the
release number and used for change control purposes only.

Version Number Date Modified Modified by: Description of

changes
0.1 23-Jun-2013 Pierre Gauthier

TM Forum
Description e.g. first
issue of document

0.2 July 2013 Tina O'Sullivan Updated branding

0.3 8-Oct-2013 Pierre Gauthier Further updates

1.0 9-Oct-2013 Tina O'Sullivan Minor corrections

1.1.0 November 2014 Pierre Gauthier Updates for Fx14.5

1.1.1 March 2015 Alicja Kawecki Updated cover,
footer and Notice to
reflect TM Forum
Approved status

3.0.0 November 2017 Nicoleta Stoica Updates for Fx 17.5

3.0.1 12 Dec 2017 Adrienne Walcott Formatting/style
edits prior to
publishing

3.0.2 20 Mar 2018 Adrienne Walcott Updated to reflect
TM Forum
Approved Status

12.0.2. Release History
This section records the changes between this and the previous Official document release. The
release number is the ‘Marketing’ number which this version of the document is first being
assigned to.

REST API Design Guidelines Part 1

 © TM Forum 2018. All Rights Reserved. Page 91 of 91

Release
Number

Date Modified Modified by: Description of
changes

17.5.0 08-Nov-2017 Nicoleta Stoica first release of
document

17.5.1 20 Mar-2018 Adrienne Walcott Updated to reflect
TM Forum
Approved Status

Acknowledgments

This document was prepared by the members of the TM Forum API team:
o Pierre Gauthier, TM Forum, Editor and Team Leader
o Nicoleta Stoica, Vodafone, Author
o Luis Velarde, Telefonica, Contributor
o Kamal Maghsoudlou, Ericsson, Contributor
o Christophe Michel, Amdocs, Contributor
o Hongxia Hao, Huawei, Contributor,
o Jonathan Goldberg, Amdocs, Contributor
o Fengjing Tan, Huawei, Contributor
o Anoop Gupta, Amdocs, Contributor
o Sophie Bouleau, Orange, Contributor
o Ludovic Robert, Orange, Contributor

	Notice
	Table of Contents
	List of Figures
	List of Tables
	Executive Summary
	Conventions
	1. General
	API Resource Archetypes
	REST Levels
	REST API SPECIFICATION INFORMATION
	API implementation technology
	HTTP HEADERS
	GENERAL HTTP HEADERS
	REQUEST AND RESPONSE HTTP HEADERS – CLIENT SIDE
	REQUEST AND RESPONSE HTTP HEADERS – SERVER SIDE
	CUSTOM HEADER

	2. Domain and URI Naming Standards
	Managed Entity Model
	Resource Model and Naming
	Resource ID and href
	Resource Naming Convention
	Resource fields Naming Convention
	Identifier syntax and uniform contract verbs
	Resource collection naming

	3. Uniform Contract Methods and Media Types
	Uniform Contract Operations
	API Media Types
	API RESPONSE STATUS and EXCEPTION CODES
	User, Application and Extended Error Codes
	Representations
	Common Information Model

	4. Query Resources Patterns
	Query single Resource all attributes
	Querying multiple Resources
	Query partial Resource representation or attribute selection
	Query Resources with attribute filtering
	Query Resources with attribute filtering and Iterators
	4.0.1. Paging

	Query Resources with attribute filtering and attribute selection
	Sorting

	5. Modify resources patterns
	Uniform contract operations for modifying resources
	Replace all attributes of a resource
	Modify Attribute subset of a resource
	Modify Multi-Valued Attribute
	JSON-PATCH extension to manage arrays

	6. Create Resource Patterns
	Creating a single Resource
	Creating Multiple Resources
	Create a single resource with attribute selection

	7. Delete Resource Pattern
	8. Task Resource Pattern
	Modeling Complex operations with task resources
	Using Task with iterator based response

	9. Monitor pattern
	10. Notification Patterns
	Register Listener
	Unregister Listener
	Publishing Events
	Content type filtering

	11. Versioning
	API Versioning

	12. Administrative Appendix
	Document History
	12.0.1. Version History
	12.0.2. Release History

	Acknowledgments

